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FOREWORD

This report is a preprint of a paper with the same title which is to

appear in the Annals of Probability. This work was presented in preliminary

form at the 18th IEEE Conference on Decision and Control, Ft. Lauderdale,

FL, December 12-14, 1979.
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1. Introduction. Suppose we observe the random field [Yz ;2 € n“} glven

for each z € R by L (Sz + Nz) where [sz;z € Rn] and {Nz; z € Rn} sxe
orthogonal random fields, each of which is second order, homogeneous, and
quadratic-mean continuous. Suppose further that h is a complex-valued Borel-
measurable function on Rn, and that §z denotes that the linear estimate of
S, based on {Yz; z € R%} which has transfer function h. Then the quadratic-

mean estimation error associated with §z is given by

s 12 -n 2 2, A .
E{[s,-8,| "} = @m) [J‘R|1-rq dmg + J”Rnlhl dm.] = e(h;mg,m.) (1)

where L and MN are the spectral measures on (Rnﬁn ) associated (via
Bochner's theorem [1, p. 245]) with {Sz; z € R} and {Nz; z € R"},
respectively. For fixed mg and me, the minimum possible value of e(h;ms,mﬂ)
is achieved by the estimate with transfer function f = dms/d (ms +mN) and
this minimum value is given by (Zn).nj' fldmn.l If, on the other hand,

R
mg and m, are known only to be in classes 77{8 and 7"1«’ respectively, of
spectral measures on (Rn,Bn ), then a reasonable design strategy {s to find
a linear estimate whose transfer function minimizes sup eCh;m ,m.N).

Mg X Ty S

Such an estimate will be a minimax linear smoother for 7Ils and 7/% Certain
aspects of this problem have been considered by Kassam and Lim [2] and by
the author [3]. In this paper we consider the minimax linear smoothing
problem for the situation in which the measure classes 7)18 and 7ItN are of the
type generated by 2-alternating capacities as considered by Huber and
Strassen [4] in the context of minimax hypothesis testing. Examples of this
type of class include mixtures, Prohorov and Kolmogorov (variational)

neighborhoods, and other previously considered models for spectral uncertainty.

1

Note that e(h;ms,mN) = (211)-“]‘ a fzan + (Zﬁ).nI nlf\-hl 2c!(ms +nN).
R R
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Here we apply the results of Huber and Strassen to find the structure of

minimax linear smoothers for general models of this type.

2. The minimax smoother for capacity classes. In the following, Q denotes
a fixed subset of Rn, & denotes the Borel g-algebra on {I, and 7 denotes

the class of all finite measures on (1,7). Recall that a finite set
function v on & is a 2-alternating capacity (see Choquet [5]) on (Q,4)

if it is increasing, continuous from below, continuous from above for closed
sets, and if it satisfies v(p) = 0 and v(AU B) + (AN B) < v(A) + v(B)

for all A, B € 4. For a 2-alternating capacity v on (Q,7) define the set

m, by
m, = {m € M| m(a) S v(A) for all A €4, and m@) =v@)]. @)

A number of properties of classes of the form of (2) have been developed by
Huber and Strassen [4]., Note, for example, that ?Rv is weakly compact and
that, if v is a measure, then 7 = {v}.

For any pair (VO’VI) of 2-alternating capacities on (Q,4) there exists
a Radon-Nikodym derivative dVI/dVO’ introduced in [4], which has the defining

property that, for each t € [0,»],

r_({dv,/dv, > t}) = inf r_(A) 3)
t 1770 A€g ©
where T, A) 8 (1+t)-1[tv°(A) + vl(Ac)]. This derivative (which is a

family of functions having the defining property (3)) is the basis for the
minimax tests between capacity classes of the form of (2) as considered
in [4]. Further properties and a generalization of this derivative have been

considered by Rieder [6]. In this context we state the following result

which i{s Theorem 4.1 of [4]:
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Lemma 2.1 (Huber-Strassen): Suppose Vg and VN are 2-alternating capacities

and L is a veraion dvs/dvu. Then there exist measures g € mv and
S
U € 7I(v such that m, € dqs/dq" and such that
N

qg({my < t}) = vg(my < th
aydmg > 1) = vy {my > th

for all t € [0,=].
Let J denote the class of all complex-valued J-measurable functions on

Q. Lemma 2.1 leads to the following theorem:

Theorem 2.2: Suppose vg and vy are 2-alternating capacities on 0,4). Let

T be a version of dvs/dv“ and choose (qs,qN) as in Lemma 2.1. Define

h0 = no(l +ﬂo) . Then [ho,(qs,qn)l is a saddle-point solution to the game

min sup e(h;mg,m.)
h€X (m.,m,)E€ X
s My %s m"u
where e is defined in (1), and thus h

Mg 4 Mt

Proof: Noting that ho € o:lqs/cl(qs +qN), we have directly that

0 is a minimax linear smoother for

e(hyidg,qy) = e(h;qg,qy)

for all h € X, Thus, it is sufficient to show

e(yimg,m.) £ e(hyiqg,qy) (%)
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for all (ms.nu) € 7% X MN. Lemma 2.1 asserts that Ty is stochascically
smallest over mv under g and is stochastically largest over 7& under
aye Thus, since |1-bo|® = (14m)"? 1s decreasing 1n 7y and [b (2 =

0
-2

ﬁg(l +m is increasing in n,, we have

o’
2 2
_]‘QI 1-ho| “am; < j‘0|1 - hy| “dqg

and

2 2
I o emy = 1/,

for all (ms ,nm) € 7I(vs X 7&“. Equation (4) and hence Theorem 2.1 follow.

Note that, in view of Theorem 2,1, the pair (qs’qN) singled out by
Lemma 2.1 can be thought of a least-favorable pair of spectral measures
for minimax linear smoothing. Concerning this pair of measures, we may

also state the following property:

eorem 2.3: The pair (q.,q,) € X satisfies the conclusion of
5’ N s N

Lemma 2.1 if and only if its maximizes

. - -n
ain e@iag,my) = @m J‘Q[mns/dons+mt,mmN

over all (ms,nu) € 7l(vs X ﬂlvu.

Proof: Define f = dﬂN/d(ﬂs +nn). Then

min e(him.,m,) = @m " fam_ = 2m) [ (£ - £2)d @ +m).
Bin ¢ ®ing,m, [ oms I8 mg +my

Since C[x] = (x-xz) is concave and twice continmuously differentiable on

[0,1], Theorem 2.3 follows from Theorem 6.1 of [4].

e
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3. Discussion. Theorem 2.2 gives the general solution to the minimax
linear smoothing problem for signal and noise uncertainty classes of the
form of (2). Several useful examples of classes of this type are given by
Huber and Strassen in [4], and other useful examples are given by Rieder
{6], Strassen [7], and Vastola and Poor [8]. Some of the most commonly
used examples of classes of the form 7ltv can be written as ¢-neighborhoods
of some nominal measure u. Examples of capacity classes that have this

structure are contaminated mixtures, variational neighborhoods, and Prohorov

neighborhoods (see [4]). For this type of class, an uncertainty model will
consist of a nominal pair ms,pN) of signal and noise spectral measures
with respective degrees ¢g and N of uncertainty placed on the nominal
measures. The derivative between capacities generating classes of this ‘

type is often of the form (see Huber [9, 10} and Rieder [6])
My (@) =max{c', min{c", A @)}}, o € Q, (5)

where A is the Radon-Nikodym derivative between the nominal pair of measures ‘

(L.e., A € du.s/mN) and ¢' and c¢" are nonnegative constamts with c' <€ ¢,
1f o of (5) is a version of dvs/va, then Theorem 2.2 implies that a

minimax linear smoother for 7/% and mv is given by
S N

hy@) =max{k', min{k", h' w3}, w€Q 6)

where k' = c'/(1+¢'), k" = c"/(1+c") and h' = A/(1+)\). Note that h' is
the optimum smoother for the nominal model, and thus the minimax linear
smoother for this case desensitizes the nominal smoother (to a degree depend-
ing on L and eN) in those spectral regions where either g OF ly is

dominant (i.e., wvhere h' is near 1 or is near 0).




3

4

5

PO ok e TR PR

11
11
1L
L
l
| i
2!
[
1l
L
1
1
|
1
|
L
|

i

In the situations for which (5) is valid, (6) gives the transfer
function bof the minimax linear smoother. Suppose,for example, that n=1],
Q= [-b,b] for some b< @, ¢’ < ", and h' is symmetric about w=0 and
is strictly decreasing on [0,b]. Then the minimex linesar estimate of S,

determined by ho is given explicitly by
~ '.
§, = ‘Lh" (z - t)Y dt

where &, 2 '.f'-l{ho} is given by

0

Eo(:) = B'(t) + k'[sin(bt) - sin(a't)]/(mt) + k"sin(a"t)/ (nt)

- f h'(t-r)[sin(br) - sin(a'r) + sin(a"-r)](m)-ld'r

with h' = .'r"l{h'} and with a' [resp., a'"] the positive solution to h'(a’) =k’
[resp., h' (a") = k"],

As a final comment we note that, although we assumed initially that
the observation field was a continuous-parameter field, Theorems 2.2 and
2.3 are also directly applicable to the case in which the observation field
is a discrete-parameter field (i.e., in which the time set is Zn) since
this latter situations corresponds to the particular case of the analysis

of Section 2 in which I = [-n,n]n.
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Lyiote that e(h;mg,m.) = (2ﬂ)-nj nfxdmu + (Zn)-n‘]' nlfl-hlzd(ms +m).
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